Server : Apache System : Linux host44.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64 User : vapecompany ( 2719) PHP Version : 7.4.33 Disable Function : NONE Directory : /proc/self/root/proc/self/root/usr/lib64/perl5/CORE/ |
Upload File : |
/* pp.h * * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ #define PP(s) OP * Perl_##s(pTHX) /* =head1 Stack Manipulation Macros =for apidoc AmU||SP Stack pointer. This is usually handled by C<xsubpp>. See C<L</dSP>> and C<SPAGAIN>. =for apidoc AmU||MARK Stack marker variable for the XSUB. See C<L</dMARK>>. =for apidoc Am|void|PUSHMARK|SP Opening bracket for arguments on a callback. See C<L</PUTBACK>> and L<perlcall>. =for apidoc Ams||dSP Declares a local copy of perl's stack pointer for the XSUB, available via the C<SP> macro. See C<L</SP>>. =for apidoc ms||djSP Declare Just C<SP>. This is actually identical to C<dSP>, and declares a local copy of perl's stack pointer, available via the C<SP> macro. See C<L<perlapi/SP>>. (Available for backward source code compatibility with the old (Perl 5.005) thread model.) =for apidoc Ams||dMARK Declare a stack marker variable, C<mark>, for the XSUB. See C<L</MARK>> and C<L</dORIGMARK>>. =for apidoc Ams||dORIGMARK Saves the original stack mark for the XSUB. See C<L</ORIGMARK>>. =for apidoc AmU||ORIGMARK The original stack mark for the XSUB. See C<L</dORIGMARK>>. =for apidoc Ams||SPAGAIN Refetch the stack pointer. Used after a callback. See L<perlcall>. =cut */ #undef SP /* Solaris 2.7 i386 has this in /usr/include/sys/reg.h */ #define SP sp #define MARK mark #define TARG targ #define PUSHMARK(p) \ STMT_START { \ I32 * mark_stack_entry; \ if (UNLIKELY((mark_stack_entry = ++PL_markstack_ptr) \ == PL_markstack_max)) \ mark_stack_entry = markstack_grow(); \ *mark_stack_entry = (I32)((p) - PL_stack_base); \ DEBUG_s(DEBUG_v(PerlIO_printf(Perl_debug_log, \ "MARK push %p %" IVdf "\n", \ PL_markstack_ptr, (IV)*mark_stack_entry))); \ } STMT_END #define TOPMARK S_TOPMARK(aTHX) #define POPMARK S_POPMARK(aTHX) #define INCMARK \ STMT_START { \ DEBUG_s(DEBUG_v(PerlIO_printf(Perl_debug_log, \ "MARK inc %p %" IVdf "\n", \ (PL_markstack_ptr+1), (IV)*(PL_markstack_ptr+1)))); \ PL_markstack_ptr++; \ } STMT_END #define dSP SV **sp = PL_stack_sp #define djSP dSP #define dMARK SV **mark = PL_stack_base + POPMARK #define dORIGMARK const I32 origmark = (I32)(mark - PL_stack_base) #define ORIGMARK (PL_stack_base + origmark) #define SPAGAIN sp = PL_stack_sp #define MSPAGAIN STMT_START { sp = PL_stack_sp; mark = ORIGMARK; } STMT_END #define GETTARGETSTACKED targ = (PL_op->op_flags & OPf_STACKED ? POPs : PAD_SV(PL_op->op_targ)) #define dTARGETSTACKED SV * GETTARGETSTACKED #define GETTARGET targ = PAD_SV(PL_op->op_targ) #define dTARGET SV * GETTARGET #define GETATARGET targ = (PL_op->op_flags & OPf_STACKED ? sp[-1] : PAD_SV(PL_op->op_targ)) #define dATARGET SV * GETATARGET #define dTARG SV *targ #define NORMAL PL_op->op_next #define DIE return Perl_die /* =for apidoc Ams||PUTBACK Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>. See C<L</PUSHMARK>> and L<perlcall> for other uses. =for apidoc Amn|SV*|POPs Pops an SV off the stack. =for apidoc Amn|char*|POPp Pops a string off the stack. =for apidoc Amn|char*|POPpx Pops a string off the stack. Identical to POPp. There are two names for historical reasons. =for apidoc Amn|char*|POPpbytex Pops a string off the stack which must consist of bytes i.e. characters < 256. =for apidoc Amn|NV|POPn Pops a double off the stack. =for apidoc Amn|IV|POPi Pops an integer off the stack. =for apidoc Amn|UV|POPu Pops an unsigned integer off the stack. =for apidoc Amn|long|POPl Pops a long off the stack. =for apidoc Amn|long|POPul Pops an unsigned long off the stack. =cut */ #define PUTBACK PL_stack_sp = sp #define RETURN return (PUTBACK, NORMAL) #define RETURNOP(o) return (PUTBACK, o) #define RETURNX(x) return (x, PUTBACK, NORMAL) #define POPs (*sp--) #define POPp POPpx #define POPpx (SvPVx_nolen(POPs)) #define POPpconstx (SvPVx_nolen_const(POPs)) #define POPpbytex (SvPVbytex_nolen(POPs)) #define POPn (SvNVx(POPs)) #define POPi ((IV)SvIVx(POPs)) #define POPu ((UV)SvUVx(POPs)) #define POPl ((long)SvIVx(POPs)) #define POPul ((unsigned long)SvIVx(POPs)) #define TOPs (*sp) #define TOPm1s (*(sp-1)) #define TOPp1s (*(sp+1)) #define TOPp TOPpx #define TOPpx (SvPV_nolen(TOPs)) #define TOPn (SvNV(TOPs)) #define TOPi ((IV)SvIV(TOPs)) #define TOPu ((UV)SvUV(TOPs)) #define TOPl ((long)SvIV(TOPs)) #define TOPul ((unsigned long)SvUV(TOPs)) /* Go to some pains in the rare event that we must extend the stack. */ /* =for apidoc Am|void|EXTEND|SP|SSize_t nitems Used to extend the argument stack for an XSUB's return values. Once used, guarantees that there is room for at least C<nitems> to be pushed onto the stack. =for apidoc Am|void|PUSHs|SV* sv Push an SV onto the stack. The stack must have room for this element. Does not handle 'set' magic. Does not use C<TARG>. See also C<L</PUSHmortal>>, C<L</XPUSHs>>, and C<L</XPUSHmortal>>. =for apidoc Am|void|PUSHp|char* str|STRLEN len Push a string onto the stack. The stack must have room for this element. The C<len> indicates the length of the string. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mPUSHp>> instead. See also C<L</XPUSHp>> and C<L</mXPUSHp>>. =for apidoc Am|void|PUSHn|NV nv Push a double onto the stack. The stack must have room for this element. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mPUSHn>> instead. See also C<L</XPUSHn>> and C<L</mXPUSHn>>. =for apidoc Am|void|PUSHi|IV iv Push an integer onto the stack. The stack must have room for this element. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mPUSHi>> instead. See also C<L</XPUSHi>> and C<L</mXPUSHi>>. =for apidoc Am|void|PUSHu|UV uv Push an unsigned integer onto the stack. The stack must have room for this element. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mPUSHu>> instead. See also C<L</XPUSHu>> and C<L</mXPUSHu>>. =for apidoc Am|void|XPUSHs|SV* sv Push an SV onto the stack, extending the stack if necessary. Does not handle 'set' magic. Does not use C<TARG>. See also C<L</XPUSHmortal>>, C<PUSHs> and C<PUSHmortal>. =for apidoc Am|void|XPUSHp|char* str|STRLEN len Push a string onto the stack, extending the stack if necessary. The C<len> indicates the length of the string. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mXPUSHp>> instead. See also C<L</PUSHp>> and C<L</mPUSHp>>. =for apidoc Am|void|XPUSHn|NV nv Push a double onto the stack, extending the stack if necessary. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mXPUSHn>> instead. See also C<L</PUSHn>> and C<L</mPUSHn>>. =for apidoc Am|void|XPUSHi|IV iv Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mXPUSHi>> instead. See also C<L</PUSHi>> and C<L</mPUSHi>>. =for apidoc Am|void|XPUSHu|UV uv Push an unsigned integer onto the stack, extending the stack if necessary. Handles 'set' magic. Uses C<TARG>, so C<dTARGET> or C<dXSTARG> should be called to declare it. Do not call multiple C<TARG>-oriented macros to return lists from XSUB's - see C<L</mXPUSHu>> instead. See also C<L</PUSHu>> and C<L</mPUSHu>>. =for apidoc Am|void|mPUSHs|SV* sv Push an SV onto the stack and mortalizes the SV. The stack must have room for this element. Does not use C<TARG>. See also C<L</PUSHs>> and C<L</mXPUSHs>>. =for apidoc Am|void|PUSHmortal Push a new mortal SV onto the stack. The stack must have room for this element. Does not use C<TARG>. See also C<L</PUSHs>>, C<L</XPUSHmortal>> and C<L</XPUSHs>>. =for apidoc Am|void|mPUSHp|char* str|STRLEN len Push a string onto the stack. The stack must have room for this element. The C<len> indicates the length of the string. Does not use C<TARG>. See also C<L</PUSHp>>, C<L</mXPUSHp>> and C<L</XPUSHp>>. =for apidoc Am|void|mPUSHn|NV nv Push a double onto the stack. The stack must have room for this element. Does not use C<TARG>. See also C<L</PUSHn>>, C<L</mXPUSHn>> and C<L</XPUSHn>>. =for apidoc Am|void|mPUSHi|IV iv Push an integer onto the stack. The stack must have room for this element. Does not use C<TARG>. See also C<L</PUSHi>>, C<L</mXPUSHi>> and C<L</XPUSHi>>. =for apidoc Am|void|mPUSHu|UV uv Push an unsigned integer onto the stack. The stack must have room for this element. Does not use C<TARG>. See also C<L</PUSHu>>, C<L</mXPUSHu>> and C<L</XPUSHu>>. =for apidoc Am|void|mXPUSHs|SV* sv Push an SV onto the stack, extending the stack if necessary and mortalizes the SV. Does not use C<TARG>. See also C<L</XPUSHs>> and C<L</mPUSHs>>. =for apidoc Am|void|XPUSHmortal Push a new mortal SV onto the stack, extending the stack if necessary. Does not use C<TARG>. See also C<L</XPUSHs>>, C<L</PUSHmortal>> and C<L</PUSHs>>. =for apidoc Am|void|mXPUSHp|char* str|STRLEN len Push a string onto the stack, extending the stack if necessary. The C<len> indicates the length of the string. Does not use C<TARG>. See also C<L</XPUSHp>>, C<mPUSHp> and C<PUSHp>. =for apidoc Am|void|mXPUSHn|NV nv Push a double onto the stack, extending the stack if necessary. Does not use C<TARG>. See also C<L</XPUSHn>>, C<L</mPUSHn>> and C<L</PUSHn>>. =for apidoc Am|void|mXPUSHi|IV iv Push an integer onto the stack, extending the stack if necessary. Does not use C<TARG>. See also C<L</XPUSHi>>, C<L</mPUSHi>> and C<L</PUSHi>>. =for apidoc Am|void|mXPUSHu|UV uv Push an unsigned integer onto the stack, extending the stack if necessary. Does not use C<TARG>. See also C<L</XPUSHu>>, C<L</mPUSHu>> and C<L</PUSHu>>. =cut */ /* _EXTEND_SAFE_N(n): private helper macro for EXTEND(). * Tests whether the value of n would be truncated when implicitly cast to * SSize_t as an arg to stack_grow(). If so, sets it to -1 instead to * trigger a panic. It will be constant folded on platforms where this * can't happen. */ #define _EXTEND_SAFE_N(n) \ (sizeof(n) > sizeof(SSize_t) && ((SSize_t)(n) != (n)) ? -1 : (n)) #ifdef STRESS_REALLOC # define EXTEND(p,n) STMT_START { \ sp = stack_grow(sp,p,_EXTEND_SAFE_N(n)); \ PERL_UNUSED_VAR(sp); \ } STMT_END /* Same thing, but update mark register too. */ # define MEXTEND(p,n) STMT_START { \ const SSize_t markoff = mark - PL_stack_base; \ sp = stack_grow(sp,p,_EXTEND_SAFE_N(n)); \ mark = PL_stack_base + markoff; \ PERL_UNUSED_VAR(sp); \ } STMT_END #else /* _EXTEND_NEEDS_GROW(p,n): private helper macro for EXTEND(). * Tests to see whether n is too big and we need to grow the stack. Be * very careful if modifying this. There are many ways to get things wrong * (wrapping, truncating etc) that could cause a false negative and cause * the call to stack_grow() to be skipped. On the other hand, false * positives are safe. * Bear in mind that sizeof(p) may be less than, equal to, or greater * than sizeof(n), and while n is documented to be signed, someone might * pass an unsigned value or expression. In general don't use casts to * avoid warnings; instead expect the caller to fix their code. * It is legal for p to be greater than PL_stack_max. * If the allocated stack is already very large but current usage is * small, then PL_stack_max - p might wrap round to a negative value, but * this just gives a safe false positive */ # define _EXTEND_NEEDS_GROW(p,n) ( (n) < 0 || PL_stack_max - p < (n)) # define EXTEND(p,n) STMT_START { \ if (UNLIKELY(_EXTEND_NEEDS_GROW(p,n))) { \ sp = stack_grow(sp,p,_EXTEND_SAFE_N(n)); \ PERL_UNUSED_VAR(sp); \ } } STMT_END /* Same thing, but update mark register too. */ # define MEXTEND(p,n) STMT_START { \ if (UNLIKELY(_EXTEND_NEEDS_GROW(p,n))) { \ const SSize_t markoff = mark - PL_stack_base;\ sp = stack_grow(sp,p,_EXTEND_SAFE_N(n)); \ mark = PL_stack_base + markoff; \ PERL_UNUSED_VAR(sp); \ } } STMT_END #endif /* set TARG to the IV value i. If do_taint is false, * assume that PL_tainted can never be true */ #define TARGi(i, do_taint) \ STMT_START { \ IV TARGi_iv = i; \ if (LIKELY( \ ((SvFLAGS(TARG) & (SVTYPEMASK|SVf_THINKFIRST|SVf_IVisUV)) == SVt_IV) \ & (do_taint ? !TAINT_get : 1))) \ { \ /* Cheap SvIOK_only(). \ * Assert that flags which SvIOK_only() would test or \ * clear can't be set, because we're SVt_IV */ \ assert(!(SvFLAGS(TARG) & \ (SVf_OOK|SVf_UTF8|(SVf_OK & ~(SVf_IOK|SVp_IOK))))); \ SvFLAGS(TARG) |= (SVf_IOK|SVp_IOK); \ /* SvIV_set() where sv_any points to head */ \ TARG->sv_u.svu_iv = TARGi_iv; \ } \ else \ sv_setiv_mg(targ, TARGi_iv); \ } STMT_END /* set TARG to the UV value u. If do_taint is false, * assume that PL_tainted can never be true */ #define TARGu(u, do_taint) \ STMT_START { \ UV TARGu_uv = u; \ if (LIKELY( \ ((SvFLAGS(TARG) & (SVTYPEMASK|SVf_THINKFIRST|SVf_IVisUV)) == SVt_IV) \ & (do_taint ? !TAINT_get : 1) \ & (TARGu_uv <= (UV)IV_MAX))) \ { \ /* Cheap SvIOK_only(). \ * Assert that flags which SvIOK_only() would test or \ * clear can't be set, because we're SVt_IV */ \ assert(!(SvFLAGS(TARG) & \ (SVf_OOK|SVf_UTF8|(SVf_OK & ~(SVf_IOK|SVp_IOK))))); \ SvFLAGS(TARG) |= (SVf_IOK|SVp_IOK); \ /* SvIV_set() where sv_any points to head */ \ TARG->sv_u.svu_iv = TARGu_uv; \ } \ else \ sv_setuv_mg(targ, TARGu_uv); \ } STMT_END /* set TARG to the NV value n. If do_taint is false, * assume that PL_tainted can never be true */ #define TARGn(n, do_taint) \ STMT_START { \ NV TARGn_nv = n; \ if (LIKELY( \ ((SvFLAGS(TARG) & (SVTYPEMASK|SVf_THINKFIRST)) == SVt_NV) \ & (do_taint ? !TAINT_get : 1))) \ { \ /* Cheap SvNOK_only(). \ * Assert that flags which SvNOK_only() would test or \ * clear can't be set, because we're SVt_NV */ \ assert(!(SvFLAGS(TARG) & \ (SVf_OOK|SVf_UTF8|(SVf_OK & ~(SVf_NOK|SVp_NOK))))); \ SvFLAGS(TARG) |= (SVf_NOK|SVp_NOK); \ SvNV_set(TARG, TARGn_nv); \ } \ else \ sv_setnv_mg(targ, TARGn_nv); \ } STMT_END #define PUSHs(s) (*++sp = (s)) #define PUSHTARG STMT_START { SvSETMAGIC(TARG); PUSHs(TARG); } STMT_END #define PUSHp(p,l) STMT_START { sv_setpvn(TARG, (p), (l)); PUSHTARG; } STMT_END #define PUSHn(n) STMT_START { TARGn(n,1); PUSHs(TARG); } STMT_END #define PUSHi(i) STMT_START { TARGi(i,1); PUSHs(TARG); } STMT_END #define PUSHu(u) STMT_START { TARGu(u,1); PUSHs(TARG); } STMT_END #define XPUSHs(s) STMT_START { EXTEND(sp,1); *++sp = (s); } STMT_END #define XPUSHTARG STMT_START { SvSETMAGIC(TARG); XPUSHs(TARG); } STMT_END #define XPUSHp(p,l) STMT_START { sv_setpvn(TARG, (p), (l)); XPUSHTARG; } STMT_END #define XPUSHn(n) STMT_START { TARGn(n,1); XPUSHs(TARG); } STMT_END #define XPUSHi(i) STMT_START { TARGi(i,1); XPUSHs(TARG); } STMT_END #define XPUSHu(u) STMT_START { TARGu(u,1); XPUSHs(TARG); } STMT_END #define XPUSHundef STMT_START { SvOK_off(TARG); XPUSHs(TARG); } STMT_END #define mPUSHs(s) PUSHs(sv_2mortal(s)) #define PUSHmortal PUSHs(sv_newmortal()) #define mPUSHp(p,l) PUSHs(newSVpvn_flags((p), (l), SVs_TEMP)) #define mPUSHn(n) sv_setnv(PUSHmortal, (NV)(n)) #define mPUSHi(i) sv_setiv(PUSHmortal, (IV)(i)) #define mPUSHu(u) sv_setuv(PUSHmortal, (UV)(u)) #define mXPUSHs(s) XPUSHs(sv_2mortal(s)) #define XPUSHmortal XPUSHs(sv_newmortal()) #define mXPUSHp(p,l) STMT_START { EXTEND(sp,1); mPUSHp((p), (l)); } STMT_END #define mXPUSHn(n) STMT_START { EXTEND(sp,1); sv_setnv(PUSHmortal, (NV)(n)); } STMT_END #define mXPUSHi(i) STMT_START { EXTEND(sp,1); sv_setiv(PUSHmortal, (IV)(i)); } STMT_END #define mXPUSHu(u) STMT_START { EXTEND(sp,1); sv_setuv(PUSHmortal, (UV)(u)); } STMT_END #define SETs(s) (*sp = s) #define SETTARG STMT_START { SvSETMAGIC(TARG); SETs(TARG); } STMT_END #define SETp(p,l) STMT_START { sv_setpvn(TARG, (p), (l)); SETTARG; } STMT_END #define SETn(n) STMT_START { TARGn(n,1); SETs(TARG); } STMT_END #define SETi(i) STMT_START { TARGi(i,1); SETs(TARG); } STMT_END #define SETu(u) STMT_START { TARGu(u,1); SETs(TARG); } STMT_END #define dTOPss SV *sv = TOPs #define dPOPss SV *sv = POPs #define dTOPnv NV value = TOPn #define dPOPnv NV value = POPn #define dPOPnv_nomg NV value = (sp--, SvNV_nomg(TOPp1s)) #define dTOPiv IV value = TOPi #define dPOPiv IV value = POPi #define dTOPuv UV value = TOPu #define dPOPuv UV value = POPu #define dPOPXssrl(X) SV *right = POPs; SV *left = CAT2(X,s) #define dPOPXnnrl(X) NV right = POPn; NV left = CAT2(X,n) #define dPOPXiirl(X) IV right = POPi; IV left = CAT2(X,i) #define USE_LEFT(sv) \ (SvOK(sv) || !(PL_op->op_flags & OPf_STACKED)) #define dPOPXiirl_ul_nomg(X) \ IV right = (sp--, SvIV_nomg(TOPp1s)); \ SV *leftsv = CAT2(X,s); \ IV left = USE_LEFT(leftsv) ? SvIV_nomg(leftsv) : 0 #define dPOPPOPssrl dPOPXssrl(POP) #define dPOPPOPnnrl dPOPXnnrl(POP) #define dPOPPOPiirl dPOPXiirl(POP) #define dPOPTOPssrl dPOPXssrl(TOP) #define dPOPTOPnnrl dPOPXnnrl(TOP) #define dPOPTOPnnrl_nomg \ NV right = SvNV_nomg(TOPs); NV left = (sp--, SvNV_nomg(TOPs)) #define dPOPTOPiirl dPOPXiirl(TOP) #define dPOPTOPiirl_ul_nomg dPOPXiirl_ul_nomg(TOP) #define dPOPTOPiirl_nomg \ IV right = SvIV_nomg(TOPs); IV left = (sp--, SvIV_nomg(TOPs)) #define RETPUSHYES RETURNX(PUSHs(&PL_sv_yes)) #define RETPUSHNO RETURNX(PUSHs(&PL_sv_no)) #define RETPUSHUNDEF RETURNX(PUSHs(&PL_sv_undef)) #define RETSETYES RETURNX(SETs(&PL_sv_yes)) #define RETSETNO RETURNX(SETs(&PL_sv_no)) #define RETSETUNDEF RETURNX(SETs(&PL_sv_undef)) #define RETSETTARG STMT_START { SETTARG; RETURN; } STMT_END #define ARGTARG PL_op->op_targ #define MAXARG (PL_op->op_private & OPpARG4_MASK) #define SWITCHSTACK(f,t) \ STMT_START { \ AvFILLp(f) = sp - PL_stack_base; \ PL_stack_base = AvARRAY(t); \ PL_stack_max = PL_stack_base + AvMAX(t); \ sp = PL_stack_sp = PL_stack_base + AvFILLp(t); \ PL_curstack = t; \ } STMT_END #define EXTEND_MORTAL(n) \ STMT_START { \ SSize_t eMiX = PL_tmps_ix + (n); \ if (UNLIKELY(eMiX >= PL_tmps_max)) \ (void)Perl_tmps_grow_p(aTHX_ eMiX); \ } STMT_END #define AMGf_noright 1 #define AMGf_noleft 2 #define AMGf_assign 4 #define AMGf_unary 8 #define AMGf_numeric 0x10 /* for Perl_try_amagic_bin */ #define AMGf_set 0x20 /* for Perl_try_amagic_bin */ #define AMGf_want_list 0x40 #define AMGf_numarg 0x80 /* do SvGETMAGIC on the stack args before checking for overload */ #define tryAMAGICun_MG(method, flags) STMT_START { \ if ( UNLIKELY((SvFLAGS(TOPs) & (SVf_ROK|SVs_GMG))) \ && Perl_try_amagic_un(aTHX_ method, flags)) \ return NORMAL; \ } STMT_END #define tryAMAGICbin_MG(method, flags) STMT_START { \ if ( UNLIKELY(((SvFLAGS(TOPm1s)|SvFLAGS(TOPs)) & (SVf_ROK|SVs_GMG))) \ && Perl_try_amagic_bin(aTHX_ method, flags)) \ return NORMAL; \ } STMT_END #define AMG_CALLunary(sv,meth) \ amagic_call(sv,&PL_sv_undef, meth, AMGf_noright | AMGf_unary) /* No longer used in core. Use AMG_CALLunary instead */ #define AMG_CALLun(sv,meth) AMG_CALLunary(sv, CAT2(meth,_amg)) #define tryAMAGICunTARGETlist(meth, jump) \ STMT_START { \ dSP; \ SV *tmpsv; \ SV *arg= *sp; \ U8 gimme = GIMME_V; \ if (UNLIKELY(SvAMAGIC(arg) && \ (tmpsv = amagic_call(arg, &PL_sv_undef, meth, \ AMGf_want_list | AMGf_noright \ |AMGf_unary)))) \ { \ SPAGAIN; \ if (gimme == G_VOID) { \ NOOP; \ } \ else if (gimme == G_ARRAY) { \ SSize_t i; \ SSize_t len; \ assert(SvTYPE(tmpsv) == SVt_PVAV); \ len = av_tindex((AV *)tmpsv) + 1; \ (void)POPs; /* get rid of the arg */ \ EXTEND(sp, len); \ for (i = 0; i < len; ++i) \ PUSHs(av_shift((AV *)tmpsv)); \ } \ else { /* AMGf_want_scalar */ \ dATARGET; /* just use the arg's location */ \ sv_setsv(TARG, tmpsv); \ if (opASSIGN) \ sp--; \ SETTARG; \ } \ PUTBACK; \ if (jump) { \ OP *jump_o = NORMAL->op_next; \ while (jump_o->op_type == OP_NULL) \ jump_o = jump_o->op_next; \ assert(jump_o->op_type == OP_ENTERSUB); \ (void)POPMARK; \ return jump_o->op_next; \ } \ return NORMAL; \ } \ } STMT_END /* This is no longer used anywhere in the core. You might wish to consider calling amagic_deref_call() directly, as it has a cleaner interface. */ #define tryAMAGICunDEREF(meth) \ STMT_START { \ sv = amagic_deref_call(*sp, CAT2(meth,_amg)); \ SPAGAIN; \ } STMT_END #define opASSIGN (PL_op->op_flags & OPf_STACKED) /* =for apidoc mU||LVRET True if this op will be the return value of an lvalue subroutine =cut */ #define LVRET ((PL_op->op_private & OPpMAYBE_LVSUB) && is_lvalue_sub()) #define SvCANEXISTDELETE(sv) \ (!SvRMAGICAL(sv) \ || !(mg = mg_find((const SV *) sv, PERL_MAGIC_tied)) \ || ( (stash = SvSTASH(SvRV(SvTIED_obj(MUTABLE_SV(sv), mg)))) \ && gv_fetchmethod_autoload(stash, "EXISTS", TRUE) \ && gv_fetchmethod_autoload(stash, "DELETE", TRUE) \ ) \ ) #ifdef PERL_CORE /* These are just for Perl_tied_method(), which is not part of the public API. Use 0x04 rather than the next available bit, to help the compiler if the architecture can generate more efficient instructions. */ # define TIED_METHOD_MORTALIZE_NOT_NEEDED 0x04 # define TIED_METHOD_ARGUMENTS_ON_STACK 0x08 # define TIED_METHOD_SAY 0x10 /* Used in various places that need to dereference a glob or globref */ # define MAYBE_DEREF_GV_flags(sv,phlags) \ ( \ (void)(phlags & SV_GMAGIC && (SvGETMAGIC(sv),0)), \ isGV_with_GP(sv) \ ? (GV *)(sv) \ : SvROK(sv) && SvTYPE(SvRV(sv)) <= SVt_PVLV && \ (SvGETMAGIC(SvRV(sv)), isGV_with_GP(SvRV(sv))) \ ? (GV *)SvRV(sv) \ : NULL \ ) # define MAYBE_DEREF_GV(sv) MAYBE_DEREF_GV_flags(sv,SV_GMAGIC) # define MAYBE_DEREF_GV_nomg(sv) MAYBE_DEREF_GV_flags(sv,0) # define FIND_RUNCV_padid_eq 1 # define FIND_RUNCV_level_eq 2 #endif /* * ex: set ts=8 sts=4 sw=4 et: */