VaKeR CYBER ARMY
Logo of a company Server : Apache
System : Linux host44.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : vapecompany ( 2719)
PHP Version : 7.4.33
Disable Function : NONE
Directory :  /proc/self/root/proc/self/root/opt/alt/openssl/share/man/man3/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //proc/self/root/proc/self/root/opt/alt/openssl/share/man/man3/EC_GROUP_new.3ssl
.\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.35)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "EC_GROUP_new 3"
.TH EC_GROUP_new 3 "2019-12-20" "1.0.2u" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp, EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m, EC_get_builtin_curves \- Functions for creating and destroying EC_GROUP objects.
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 2
\& #include <openssl/ec.h>
\& #include <openssl/bn.h>
\&
\& EC_GROUP *EC_GROUP_new(const EC_METHOD *meth);
\& void EC_GROUP_free(EC_GROUP *group);
\& void EC_GROUP_clear_free(EC_GROUP *group);
\&
\& EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
\& EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
\& EC_GROUP *EC_GROUP_new_by_curve_name(int nid);
\&
\& int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
\& int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
\& int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
\& int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
\&
\& size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
Within the library there are two forms of elliptic curve that are of interest. The first form is those defined over the
prime field Fp. The elements of Fp are the integers 0 to p\-1, where p is a prime number. This gives us a revised
elliptic curve equation as follows:
.PP
y^2 mod p = x^3 +ax + b mod p
.PP
The second form is those defined over a binary field F2^m where the elements of the field are integers of length at
most m bits. For this form the elliptic curve equation is modified to:
.PP
y^2 + xy = x^3 + ax^2 + b (where b != 0)
.PP
Operations in a binary field are performed relative to an \fBirreducible polynomial\fR. All such curves with OpenSSL
use a trinomial or a pentanomial for this parameter.
.PP
A new curve can be constructed by calling EC_GROUP_new, using the implementation provided by \fBmeth\fR (see
\&\fBEC_GFp_simple_method\fR\|(3)). It is then necessary to call either EC_GROUP_set_curve_GFp or
EC_GROUP_set_curve_GF2m as appropriate to create a curve defined over Fp or over F2^m respectively.
.PP
EC_GROUP_set_curve_GFp sets the curve parameters \fBp\fR, \fBa\fR and \fBb\fR for a curve over Fp stored in \fBgroup\fR.
EC_group_get_curve_GFp obtains the previously set curve parameters.
.PP
EC_GROUP_set_curve_GF2m sets the equivalent curve parameters for a curve over F2^m. In this case \fBp\fR represents
the irreducible polybnomial \- each bit represents a term in the polynomial. Therefore there will either be three
or five bits set dependant on whether the polynomial is a trinomial or a pentanomial.
EC_group_get_curve_GF2m obtains the previously set curve parameters.
.PP
The functions EC_GROUP_new_curve_GFp and EC_GROUP_new_curve_GF2m are shortcuts for calling EC_GROUP_new and the
appropriate EC_group_set_curve function. An appropriate default implementation method will be used.
.PP
Whilst the library can be used to create any curve using the functions described above, there are also a number of
predefined curves that are available. In order to obtain a list of all of the predefined curves, call the function
EC_get_builtin_curves. The parameter \fBr\fR should be an array of EC_builtin_curve structures of size \fBnitems\fR. The function
will populate the \fBr\fR array with information about the builtin curves. If \fBnitems\fR is less than the total number of
curves available, then the first \fBnitems\fR curves will be returned. Otherwise the total number of curves will be
provided. The return value is the total number of curves available (whether that number has been populated in \fBr\fR or
not). Passing a \s-1NULL\s0 \fBr\fR, or setting \fBnitems\fR to 0 will do nothing other than return the total number of curves available.
The EC_builtin_curve structure is defined as follows:
.PP
.Vb 4
\& typedef struct { 
\&        int nid;
\&        const char *comment;
\&        } EC_builtin_curve;
.Ve
.PP
Each EC_builtin_curve item has a unique integer id (\fBnid\fR), and a human readable comment string describing the curve.
.PP
In order to construct a builtin curve use the function EC_GROUP_new_by_curve_name and provide the \fBnid\fR of the curve to
be constructed.
.PP
EC_GROUP_free frees the memory associated with the \s-1EC_GROUP.\s0
.PP
EC_GROUP_clear_free destroys any sensitive data held within the \s-1EC_GROUP\s0 and then frees its memory.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
All EC_GROUP_new* functions return a pointer to the newly constructed group, or \s-1NULL\s0 on error.
.PP
EC_get_builtin_curves returns the number of builtin curves that are available.
.PP
EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m return 1 on success or 0 on error.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBcrypto\fR\|(3), \fBec\fR\|(3), \fBEC_GROUP_copy\fR\|(3),
\&\fBEC_POINT_new\fR\|(3), \fBEC_POINT_add\fR\|(3), \fBEC_KEY_new\fR\|(3),
\&\fBEC_GFp_simple_method\fR\|(3), \fBd2i_ECPKParameters\fR\|(3)

VaKeR 2022